

Version 1.1.0 Last Update: 1/8/2020

TABLE OF CONTENTS

Revision History 2

Hardware Design Standards 3

Software Design Standards 4

Software Syntax Standards 8

Documentation Standards 9

Testing and Validation Standards 11

DataFlow 12

Configuration Management 13

1

Version 1.1.0 Last Update: 1/8/2020

Revision History

Version Date Author(s) Revision

0.5 9/2018 A. Al-Mallah Created

1.0 7/30/2019 C. Klemmer & S Earle Document Released

1.1 9/6/2019 OBT Minor updates, including logging and environments

1.1 1/8/2020 OBT Included version specific software, embedding code
practices, and handling site differences

1.1 1/8/2020 C Klemmer Released

2

Version 1.1.0 Last Update: 1/8/2020

This document describes the technical requirements for the Development Organization

(DevOrg) to follow when designing, upgrading and optimizing the applications that run on IDP.

Prior to any code handoff to NCO this document should be reviewed and all necessary changes

should be applied. If for any reason you believe your application does not comply with anything

within this document please speak to the On Boarding Team (OBT) Lead. They will work with

you to determine a path forward into operations.

Hardware Design Standards
Hardware Specifications
At a minimum, the development organization will have a hardware specification for each
Virtual Machine (VM) that contains:

● Required number of Virtual Central Processing Units (CPU)s
● Required Virtual Memory
● Required RAM disk
● I/O traffic footprint

Both CPU and memory requirements should be built with an expected percentage
utilized at 80% under maximum load.
A note on the number of CPUs - Recommended 2 to 4 CPUs, 1 core per CPU. There
are 24 CPUs per blade, and the hypervisor is constantly swapping different VMs in and
out so that each of them gets some CPU cycles. Our experiments suggest that once
one exceeds 4 CPUs the amount of extra processing power gained becomes
questionable, because once the VM is not active on the blade, it becomes more and
more difficult to put it back in, since several other VMs must be taken off at the same
time to make room for it. The except are VMs that run databases -- they can have 6
CPUs.

Operating Systems
The following operational operating system is supported on the IDP infrastructure:

● Red Hat Enterprise Linux: Version 7.7
If you believe that your application requires an operating system other than Linux you
must obtain an exception by the NCO Director.

Disk Specifications
The following specifications must be provided for each disk an application accesses:

● Requirement for any local disk space

3

Version 1.1.0 Last Update: 1/8/2020

● For shared NFS mounts and local mounts the following information must be
specified in the software requirements:

○ X Name that will reside under:
/common/data/apps/application_name/tier/X
Where application_name is how you are identified on IDP
Where tier is either “dev”, “qa”, or “ops”

○ Size
○ Maximum number of files (inodes)
○ Latency requirements
○ Peak I/O generated by application

Software Design Standards

System Components
Do not embed any code that should be in an application centralized repository. Doing so
prevents security patching from being executed. This includes any software that is
downloaded through the official RedHat Network Channel. Note that when it comes to
designing any recurring process a check shall be made to ensure that an instance of
itself is not already running before it kicks off.

Site differences
It is required to keep system and application configurations the same between College
Park and Boulder sites. If they need to be different (eg:due to IPs or VM names, etc),
these differences have to be documented in the top of the configuration file and easy to
find. Do not embed differences within the configurations. Where possible, keep the
scripts identical between sites and use a reference pointer to a centralized configuration
file.

Scripting

This section applies to those scripts used by the application or used to maintain the
environment

● The first line of the script will always identify the SHELL being used
● Every script must contain a clearly demarcated comment section that explains

what the script does, what its expected inputs are, what the outputs are and what
the errors/exceptions thrown are.

● All scripts (bash, perl, python) permissions will be set as 775
● Any script utilizing command line utilities as-is must use BASH
● Scripts must always return a predefined status value

4

Version 1.1.0 Last Update: 1/8/2020

● Errors/Exceptions are echoed to stderr and written to log files
● Any function that is not both obvious and short must be commented
● Use blank lines between blocks to improve readability. Indentation is two

spaces, don't use tabs.

Languages
The application shall be implemented in any of the supported
tools/languages/frameworks:

Compiled Code C++, Java

Web Application Java, Perl, JavaScript, HTML5

Interpreted Code Bash, Perl, Python (Anaconda)

● If any application were to use an enhanced framework in addition to one of the
above listed languages, an appropriate justification needs to be specified.
Support agreements for such frameworks need to be in place before they can be
used in IDP and discussed with the OBT lead.

● These external frameworks may need further review by the NCO security team
and the OBT. The most likely questions regarding external frameworks are their
support structure, and security aspects. Another consideration would be to
evaluate open source equivalents, if available

Web Services
The following is a list of the web servers that are supported on the IDP infrastructure:

● Apache: Version 2.4
● TomCat: Version 7

IDP servers data via HTTPS or FTP front ends. All IDP web applications reside in a
shared front end infrastructure of load balanced web servers. If you believe your
application requires dedicated front end infrastructure, appropriate justification needs to
be provided to the OBT lead. All websites will be hosted out of Akamai unless noted by
OBT.

5

Version 1.1.0 Last Update: 1/8/2020

Queuing
Use standardized mechanisms for common applications such as queueing and
clustering, as opposed to using custom applications to achieve the same result. The
following queuing mechanisms are allowed on the IDP infrastructure:

● Local Data Manager (LDM) Version 6.13
● RabbitMQ (https://www.rabbitmq.com/)

Databases
The following database servers are supported:
Relational

● Postgres Version 11.3
● Mysql Version 5.6.x

Non-Relational
● MongoDB Version 4

Compilers/IDEs
The following compilers are allowed on the IDP infrastructure:

● GNU open source suite (g++) Version 4.8.5
● Java (javac) OpenJDK Version 1.8.0_x
● Eclipse (IDE)

Build Tools
The following build tools are allowed on IDP applications:

● Makefile
● Jenkins
● Maven

Third Party Software
Before an application is onboarded:

● Developers must identify any 3rd party software used. Which version and the
vendor support associated with it.

● Any 3rd party software used has to be approved by the security team
● Include any licensing costs which would have to be approved ahead of time by

the NCO director. License funding will be provided by the devorg, or agreed to be
covered by DIS.

● Open source tools must be considered, if available and a support agreement with
a vendor established.

6

https://www.rabbitmq.com/

Version 1.1.0 Last Update: 1/8/2020

● Appropriate justification for the tool selected for a purpose must be provided. This
could be a business case for using a specific software package

Unsupported(blacklist) software
Software that is not allowed:

● Stand Alone Anaconda
● Oracle Java

Failovers
Applications must be designed to be able to failover to the non primary site within 15
minutes with no data loss and minimal data latency. An application that distributes
Watches Warnings and Advisories (WWAs) must be able to failover in under 1 minute
with no data loss.

The failover must be designed to require minimal human intervention. The use of an
automated “one button” script which switches the primary DNS to fail-over successfully
is required. The application must be able to detect and report on whether the failover
has worked properly within 10 minutes of the failover. An end to end test to confirm the
products are being produced and received by the intended application(s) must be
included.

Logging

Standardized application loggers are to be used and follow these guidelines:
● Logs will be kept for a 7 day retention

○ Log retention periods needs to be configurable in a script
● Every independent piece of the application will have its own log file
● All logs, except current day’s log, must be compressed using gzip
● The level of logging must be able to be changed in real time without recompiling

the application
● Logs will be written to the dedicated NetApp or local application volume; never

under the local root volume.
● All application logs will have read/write permissions by the application user

account and read permissions by group/world.
● Developers must use log rotate coding for a maximum of daily rotation
● All critical transactions will be included in the log output

○ Any “deletes,” “writes” or “moves”
○ Any application that transmits data offsite must include a timestep of when

the file was successfully sent

7

Version 1.1.0 Last Update: 1/8/2020

● Any application that transmits WWA’s must have a more verbose output to fully
describe the reason for logged transaction.

● Any application that cannot use the system utility ‘log rotate’ must include a
configuration file that determines where logs are stored, how often they rotate,
and how long they are saved.

Format of Log Cleanup
● BASH script will reside under $HOME/config called “log_cleanup”

>retention_period=7 (defined as number of days)
>find $HOME/logs -mtime -${retention_period} -type f -exec rm {} \;

Format of Log Contents
● Log filename must follow this pattern:

app_function_YYYYMMDD.log
● Include date and time to the second for every log event
● Acceptable types of log messages: ERROR, WARNING, CRITICAL, DEBUG,

INFO
Value Severity Keyword Description Condition

0 Emergency emerg System is unusable A panic condition

1 Alert alert Action must be taken immediately A condition that should be corrected
immediately, such as a corrupted system
database

2 Critical crit Critical conditions Hard device errors

3 Error err Error conditions

4 Warning warn Warning conditions

5 Notice notice Normal but significant conditions Conditions that are not errors, but that may
require special handling

6 Informational info Informational messages

7 Debug debug Debug level messages Messages that contain information normally of
use only when debugging a program

● Errors must be easily identifiable and machine readable in the log file
● Format example:

YYYYMMDD hh:mm:ss, LEVEL, CODE_MODULE, MESSAGE

Monitoring

NCO will need the following from the DevOrg in order to set up the monitoring:

8

Version 1.1.0 Last Update: 1/8/2020

● List of processes that comprise the application
● List of web sites or other external points of access (sites required to be available

to the public)
● Log location on disk
● Error message pattern to search for in the log
● Nominal disk usage for local files, excluding shared data files
● The verbosity level of the log files must be adjustable through configuration files
● Two points of contact from the DevOrg who will provide Tier 3 support, on an as

needed basis

NCO will monitor the execution of the applications on the IDP system using the Big
Brother system. In the event of a problem, the 24x7 staff will have contact information
for the on-call personnel in the Big Brother information pages. The on-call personnel will
troubleshoot the issue and will, if necessary, contact the DevOrg for assistance.

Application Input Failures
If an application relies on data-of-opportunity as input, it must react to the loss of such
data without catastrophic failures or any intervention to recover.

Protecting IDP Infrastructure and Abusive Users

All software running on IDP must have all public facing components clearly identified so
that parts of the application vulnerable to abusive users can be isolated and monitored.
Taking action to block abusive users requires the coordination and collaboration of the
OBT and IWSB and possibly NSB. The DevOrg shall design the application so that it is
robust against abusive users and the internal actions of residing on a shared
infrastructure.

Software Syntax Standards

This section applies to variables applications must use. Such as the home location for
ldm, psql,etc.,:

● Keep variable names consistent when using capitals and underscores
○ variables must be descriptive and contain one or more words
○ One character variable names must only be used in loops or for temporary

variables
○ Prefix all names with “NCEP_” for example NCEP_LDM_HOME would

have the home location for the LDM codelog

9

Version 1.1.0 Last Update: 1/8/2020

● Line length must not exceed 80 or 100 characters with no more than one
statement per line

● Arrays must be constructed in a dynamic data structure, never static

Documentation Standards

Templates
Standardized templates have been established and adopted by the OBT for all project
artifacts. Key among those are templates for project Requirements, Requirements
Traceability Verification Matrix (RTVM), Test Cases, and project Build Specifications.
These templates shall be maintained in a standard location on Google Drive in folders
for each functional area. During the kickoff meeting the applications specifications will
be acquired and stored in the Build Spec Sheet Template. For clarification, please
contact the OBT Lead.

Code Management
Application releases are to be version tagged based on a clearly defined methodology
that is agreed between the Development teams and the IDP Onboarding team and must
follow these standards:
https://www.nco.ncep.noaa.gov/idsb/Version_Numbering_Standard.pdf

Git is the mandated Supply Chain Management (SCM) platform. A VLAB/Redmine
project must be created for every project that is onboarded, and appropriate Git
repositories are to be tied with these projects

● A document that outlines how the application is laid out in the SCM system shall
be provided by the Development Organization. Any changes made to the
software code structure shall be accurately captured in updates to this document.

Code Release Documents
When the developer is ready to hand over code the following documents will be
included:

● Installation instructions
● Testing verification steps
● Internal-only technical release notes
● Public release notes
● Resolution of all Redmine tickets
● Written assertion that full end to end testing was completed prior to code handoff

10

https://www.nco.ncep.noaa.gov/idsb/Version_Numbering_Standard.pdf

Version 1.1.0 Last Update: 1/8/2020

Installation Instructions
The developer must provide an Installation Document for each version release. This
document must include at the very least the following:

● Step by step instructions on how to build the application. The build process must
be automated using a script and instructions provided on how to run the script.

● Step by step instructions on how to install the application from scratch or as an
upgrade to application depending on the type of release it is (new version vs.
small upgrade).

○ Where it is possible, an install script will be provided
○ If the process calls for an install on several numerical systems, all systems

must be listed explicitly. Do no shorthand the instructions to
“vm-lnx-example1-40”, a list of all VMs must be written out.

● Step by step instructions on how to back out the changes.
● Instructions on how to verify a successful installation must be provided for every

step
● Identify any environmental files that need to be sourced

Testing and Validation Standards

Load Testing
Automated programs shall be provided that are designed to test the application under
the maximum theoretical loads. When determining the maximum theoretical load,
weather conditions at all times of year, and under all circumstances, should be
considered as factors. For non-weather based systems, such as emergency and
telecommunications systems, a worst case scenario should be envisioned in
determining maximum theoretical system load.

Installation Scripts
The software Installation process must be config file driven. A script setting up the
required environmental variables and what their value should be for the different
configurations should be centralized to only be changed in one location. This will allow
seamless installations between dev, qa, and ops.

Verification Steps
Verification can and should be viewed from different angles. It is important to confirm
that the customer experience is what they expect, regardless of how the application is
implemented, but knowledge of implementation details allows for additional tests that

11

Version 1.1.0 Last Update: 1/8/2020

would not be obvious simply from a description of the application’s capabilities (for
example, if there is an internal message queuing system, you might see if it can fill up
under extreme circumstances). Functioning of the system is obviously important, but it
is also useful to know how the system breaks for various types of failures, to ensure that
monitoring and debug procedures are adequate. In addition, various operations such as
software installation itself must be verified.

At a minimum, the developers must provide tests to confirm that the application meets
all functional requirements from a customer perspective. Each test should have the
“action/input” to be done, and the “results expected”, clearly outlined.

Development Organizations shall implement appropriate Unit Test Harnesses to
implement maximum code coverage in their test cases. A supporting artifact/document
that captures the results of these tests are required for review by the Onboarding Team.

Working with the IDP OBT, the development organization will provide tests designed
with a specific knowledge of the implementation details of the application, such as:

1. Optimal queue sizes
2. Maximum data rates
3. Maximum down time for failovers and upgrades

The OBT will perform appropriate trample tests. These do not check proper function
during normal conditions, but instead characterize how the application fails under
untenable conditions (disks filling up, network unavailable, etc.). Our experience has
been that some types of failures, for example a mount disappearing, can prove
extremely difficult to spot and debug even by primary support personnel during normal
work hours, and discoveries made during these tests have been the motivation for new
monitoring tests and new debug procedures.

Verifying Failovers
It is required that specific verification steps and instructions be provided so that an
application can be ensured to be working properly after a failover. Verification steps
must be automated by using a script or other executable program.

DataFlow

12

Version 1.1.0 Last Update: 1/8/2020

Applications to be onboarded onto IDP will likely have input data requirements as well
as output generated by the application. This section focuses on what data is required,
how new data can be retrieved, and how application generated output can be made
available.

Input
All operational applications shall receive inputs from operational systems and never
from QA or development systems.

All input datasets used by the application must be described, including:

● Type of data (model, observation, etc)
● Source (NOAA, other government agencies, commercial, etc)
● Source Type (FTP, HTTP, LDM, etc)
● Update Frequency (hourly, daily, etc)
● Impact of data being unavailable (output degradation, application unable to run,

etc)
● Any restrictions to data (sensitive data from commercial or foreign government

source)
● Any agreements relevant to the retrieval and use of the data.

Requests for data must be submitted to the Dataflow Team using this request form:
https://docs.google.com/forms/d/e/1FAIpQLSevecbKGt-T3uTSdRdvsvw-KqtDKadBKH1
UG_2UHZIM_nRJtA/viewform

Output
All output datasets created by the application must be described, including:

● Type and Format of data (Radar GRIB2, Satellite NetCDF, etc)
● Individual and aggregate size of data (ex: Between 1 - 10MB each, keeping 1000

files, disk usage up to 10 GB)
● Dissemination platforms (FTP Server, LDM, http service, etc)
● Requirement for amount of data retention. If the application requires an archive,

there needs to be a resource commitment to buy disk for the archive.
● Restrictions on distribution and use of the output data.

Configuration Management

13

https://docs.google.com/forms/d/e/1FAIpQLSevecbKGt-T3uTSdRdvsvw-KqtDKadBKH1UG_2UHZIM_nRJtA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSevecbKGt-T3uTSdRdvsvw-KqtDKadBKH1UG_2UHZIM_nRJtA/viewform

Version 1.1.0 Last Update: 1/8/2020

NCO follows very strict guidelines with all operational changes. Please review the
configuration management documents for reference:
https://sites.google.com/a/noaa.gov/nws-ncep-nco-cm/?pli=1

14

https://sites.google.com/a/noaa.gov/nws-ncep-nco-cm/?pli=1

